Formica polyctena

Содержание
  1. References
  2. Nest temperature regulation
  3. Dry nests
  4. Moist nests
  5. Seasonal fluctuation

References

  • Aubert, A., F. J. Richard. “Social Management of the LPS-induced Inflammation in Formica polyctena Ants.” Brain, Behavior, and Immunity. Vol. 22 (2008).
  • Beye, M., P. Neumann and R. F. A. Moritz. “Nestmate Recognition and the Genetic Gestalt in the Mound-building Ant Formica polyctena.” Insectes Sociaux. Vol 44. (1997).
  • Coenen-Stass, Dieter, Bernd Schaarschmidt and Ingolf Lamprecht. “Temperature Distribution and Calorimetric Determination of Heat Production in the Nest of the Wood Ant, Formica Polyctena (Hymenoptera, Formicidae).” Ecology, Vol. 61, No. 2 (Apr., 1980).
  • Davies, N. B., Krebs, J. R., & West, S. A. (2012). An Introduction to Behavioral Ecology (4th ed.). Oxford: Wiley-Blackwell.
  • Driessen, Gerard J.J., Andre Th. Van Raalte, and Gerrit J. De Bruyn. “Cannibalism in the Red Wood Ant, Formica polyctena (Hymenoptera: formicidae),” Oecologia. Vol. 63. (1984).
  • Dumpert, K. Trans. C. Johnson. The Social Biology of Ants. Marschfield, Massachusetts: Pitman Publishing Limited, 1978.
  • Frouz, J. “The Effect of Nest Moisture on Daily Temperature Regime in the Nests of Formica polyctena Wood Ants.” Insectes Sociaux. Vol. 47 (2000).
  • Haccou, P. and L. Hemerik. “The Influence of Larval Dispersal in the Cinnabar Moth (Tyria jacobaeae) on Predation by the Red Wood Ant (Formica polyctena): An Analysis Based on the Proportional Hazards Model.”Journal of Animal Ecology, Vol. 54, No. 3 (Oct., 1985).
  • Helantera, Heikki, and Liselotte Sundström. “Worker Reproduction in Formica Ants.” The American Naturalist, Vol. 170, No. 1 (July 2007).
  • Kruk-De Bruin, Martje, Luc C. M. Rost and Fons G. A. M. Draisma. “Estimates of the Number of Foraging Ants with the Lincoln-Index Method in Relation to the Colony Size of Formica polyctena.”Journal of Animal Ecology, Vol. 46, No. 2 (Jun., 1977).
  • Sudd, John H., and Nigel R. Franks. (1987). The Behavioral Ecology of Ants. New York: Chapman and Hall.

Nest temperature regulation

Formica polyctenaF. polyctena nest from , Germany

F. polyctena, among other social insects, has developed strategies to maintain a stable interior nest temperature despite temperature fluctuations outside. Nest moisture, solar radiation, heat produced by the metabolic activities of workers, and microbial activity in the nest material all contribute to nest thermoregulation. A stable temperature is especially crucial to the rate of development of larvae and pupae in the nest. Additionally, it has been suggested that the particular construction of the F. polyctena nests allows them to have excellent heat capacity, despite their low density and low heat capacity materials. Essentially, the outer layer of nests consists of pine needles, sap and buds, that absorbs a large amount of solar radiation. The inner core of the nest consists of mostly twigs that act like a thermal «sponge,» which external heat is funneled into.

Dry nests

Nest moisture, solar radiation, heat produced by the metabolic activities of workers, and microbial activity in the nest material all contribute to nest thermoregulation. Dry, exposed F. polyctena nests have higher temperatures during the evening, but lose heat slowly throughout the night. This fluctuation is due to the solar radiation absorbed by the nest and workers during the day. When the workers return in the evening, they have high body temperatures from foraging in the sun that warm the interior of the nest. Dry nests have low external surface temperatures during the night, indicating that the physical nest material effectively retains most of the heat gained during the day. Additionally, because these workers metabolize, they release heat from this process and counteract the heat loss from the nest during the night.

Moist nests

Moist, shaded nests display a different daily temperature pattern than dry nests due to the different conditions. In the evenings, the nest temperature drops and then increases as the night progresses. Solar radiation does not contribute a lot of heat to the nest. Also, the nest material is not an effective insulator like the dry nest material. Moist nests have high external surface temperatures during the night. Instead, they rely on another curious mechanism to warm the nest: microbial activity within the moist nest material. As the workers inside the nest during the evening raise the temperature of the surroundings, microbial activity increases which heats the nest. Indeed, microbial activity is much higher in nest material than in the surrounding forest floor. Microbial activity is not seen in dry nests because the microbes require water. However, despite this adaptation, moist nests on average have lower internal temperatures than dry nests.

Seasonal fluctuation

Formica polyctena nest temperature fluctuates seasonally as well. In the spring, there is a dramatic increase in heat production of the nest material, and then a more gradual decrease in the fall. This corresponds with the activity of the ants throughout the year. It is possible that the ants’ building activities aerate and provide optimum nutritional conditions for microbial activity, increasing the heat production of the nest well beyond what the ants themselves produce.

Комментариев нет, будьте первым кто его оставит